3.1469 \(\int \frac{1}{x^8 (a+b x^8)} \, dx\)

Optimal. Leaf size=277 \[ \frac{b^{7/8} \log \left (-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{-a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \log \left (\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{-a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}+\frac{b^{7/8} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}+1\right )}{4 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}-\frac{1}{7 a x^7} \]

[Out]

-1/(7*a*x^7) - (b^(7/8)*ArcTan[(b^(1/8)*x)/(-a)^(1/8)])/(4*(-a)^(15/8)) + (b^(7/8)*ArcTan[1 - (Sqrt[2]*b^(1/8)
*x)/(-a)^(1/8)])/(4*Sqrt[2]*(-a)^(15/8)) - (b^(7/8)*ArcTan[1 + (Sqrt[2]*b^(1/8)*x)/(-a)^(1/8)])/(4*Sqrt[2]*(-a
)^(15/8)) - (b^(7/8)*ArcTanh[(b^(1/8)*x)/(-a)^(1/8)])/(4*(-a)^(15/8)) + (b^(7/8)*Log[(-a)^(1/4) - Sqrt[2]*(-a)
^(1/8)*b^(1/8)*x + b^(1/4)*x^2])/(8*Sqrt[2]*(-a)^(15/8)) - (b^(7/8)*Log[(-a)^(1/4) + Sqrt[2]*(-a)^(1/8)*b^(1/8
)*x + b^(1/4)*x^2])/(8*Sqrt[2]*(-a)^(15/8))

________________________________________________________________________________________

Rubi [A]  time = 0.241919, antiderivative size = 277, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 11, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.846, Rules used = {325, 214, 212, 208, 205, 211, 1165, 628, 1162, 617, 204} \[ \frac{b^{7/8} \log \left (-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{-a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \log \left (\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{-a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}+\frac{b^{7/8} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}+1\right )}{4 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}-\frac{1}{7 a x^7} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^8*(a + b*x^8)),x]

[Out]

-1/(7*a*x^7) - (b^(7/8)*ArcTan[(b^(1/8)*x)/(-a)^(1/8)])/(4*(-a)^(15/8)) + (b^(7/8)*ArcTan[1 - (Sqrt[2]*b^(1/8)
*x)/(-a)^(1/8)])/(4*Sqrt[2]*(-a)^(15/8)) - (b^(7/8)*ArcTan[1 + (Sqrt[2]*b^(1/8)*x)/(-a)^(1/8)])/(4*Sqrt[2]*(-a
)^(15/8)) - (b^(7/8)*ArcTanh[(b^(1/8)*x)/(-a)^(1/8)])/(4*(-a)^(15/8)) + (b^(7/8)*Log[(-a)^(1/4) - Sqrt[2]*(-a)
^(1/8)*b^(1/8)*x + b^(1/4)*x^2])/(8*Sqrt[2]*(-a)^(15/8)) - (b^(7/8)*Log[(-a)^(1/4) + Sqrt[2]*(-a)^(1/8)*b^(1/8
)*x + b^(1/4)*x^2])/(8*Sqrt[2]*(-a)^(15/8))

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 214

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
 2]]}, Dist[r/(2*a), Int[1/(r - s*x^(n/2)), x], x] + Dist[r/(2*a), Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a,
 b}, x] && IGtQ[n/4, 1] &&  !GtQ[a/b, 0]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^8 \left (a+b x^8\right )} \, dx &=-\frac{1}{7 a x^7}-\frac{b \int \frac{1}{a+b x^8} \, dx}{a}\\ &=-\frac{1}{7 a x^7}-\frac{b \int \frac{1}{\sqrt{-a}-\sqrt{b} x^4} \, dx}{2 (-a)^{3/2}}-\frac{b \int \frac{1}{\sqrt{-a}+\sqrt{b} x^4} \, dx}{2 (-a)^{3/2}}\\ &=-\frac{1}{7 a x^7}-\frac{b \int \frac{1}{\sqrt [4]{-a}-\sqrt [4]{b} x^2} \, dx}{4 (-a)^{7/4}}-\frac{b \int \frac{1}{\sqrt [4]{-a}+\sqrt [4]{b} x^2} \, dx}{4 (-a)^{7/4}}-\frac{b \int \frac{\sqrt [4]{-a}-\sqrt [4]{b} x^2}{\sqrt{-a}+\sqrt{b} x^4} \, dx}{4 (-a)^{7/4}}-\frac{b \int \frac{\sqrt [4]{-a}+\sqrt [4]{b} x^2}{\sqrt{-a}+\sqrt{b} x^4} \, dx}{4 (-a)^{7/4}}\\ &=-\frac{1}{7 a x^7}-\frac{b^{7/8} \tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}-\frac{b^{7/8} \tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}-\frac{b^{3/4} \int \frac{1}{\frac{\sqrt [4]{-a}}{\sqrt [4]{b}}-\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{b}}+x^2} \, dx}{8 (-a)^{7/4}}-\frac{b^{3/4} \int \frac{1}{\frac{\sqrt [4]{-a}}{\sqrt [4]{b}}+\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{b}}+x^2} \, dx}{8 (-a)^{7/4}}+\frac{b^{7/8} \int \frac{\frac{\sqrt{2} \sqrt [8]{-a}}{\sqrt [8]{b}}+2 x}{-\frac{\sqrt [4]{-a}}{\sqrt [4]{b}}-\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{b}}-x^2} \, dx}{8 \sqrt{2} (-a)^{15/8}}+\frac{b^{7/8} \int \frac{\frac{\sqrt{2} \sqrt [8]{-a}}{\sqrt [8]{b}}-2 x}{-\frac{\sqrt [4]{-a}}{\sqrt [4]{b}}+\frac{\sqrt{2} \sqrt [8]{-a} x}{\sqrt [8]{b}}-x^2} \, dx}{8 \sqrt{2} (-a)^{15/8}}\\ &=-\frac{1}{7 a x^7}-\frac{b^{7/8} \tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}-\frac{b^{7/8} \tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}+\frac{b^{7/8} \log \left (\sqrt [4]{-a}-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \log \left (\sqrt [4]{-a}+\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 \sqrt{2} (-a)^{15/8}}+\frac{b^{7/8} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 \sqrt{2} (-a)^{15/8}}\\ &=-\frac{1}{7 a x^7}-\frac{b^{7/8} \tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}+\frac{b^{7/8} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{-a}}\right )}{4 (-a)^{15/8}}+\frac{b^{7/8} \log \left (\sqrt [4]{-a}-\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}-\frac{b^{7/8} \log \left (\sqrt [4]{-a}+\sqrt{2} \sqrt [8]{-a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} (-a)^{15/8}}\\ \end{align*}

Mathematica [A]  time = 0.153306, size = 395, normalized size = 1.43 \[ -\frac{8 a^{7/8}-7 b^{7/8} x^7 \sin \left (\frac{\pi }{8}\right ) \log \left (-2 \sqrt [8]{a} \sqrt [8]{b} x \sin \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )+7 b^{7/8} x^7 \sin \left (\frac{\pi }{8}\right ) \log \left (2 \sqrt [8]{a} \sqrt [8]{b} x \sin \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )-7 b^{7/8} x^7 \cos \left (\frac{\pi }{8}\right ) \log \left (-2 \sqrt [8]{a} \sqrt [8]{b} x \cos \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )+7 b^{7/8} x^7 \cos \left (\frac{\pi }{8}\right ) \log \left (2 \sqrt [8]{a} \sqrt [8]{b} x \cos \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )+14 b^{7/8} x^7 \cos \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\frac{\sqrt [8]{b} x \sec \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}-\tan \left (\frac{\pi }{8}\right )\right )+14 b^{7/8} x^7 \cos \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\frac{\sqrt [8]{b} x \sec \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}+\tan \left (\frac{\pi }{8}\right )\right )-14 b^{7/8} x^7 \sin \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\cot \left (\frac{\pi }{8}\right )-\frac{\sqrt [8]{b} x \csc \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}\right )+14 b^{7/8} x^7 \sin \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\frac{\sqrt [8]{b} x \csc \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}+\cot \left (\frac{\pi }{8}\right )\right )}{56 a^{15/8} x^7} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^8*(a + b*x^8)),x]

[Out]

-(8*a^(7/8) + 14*b^(7/8)*x^7*ArcTan[(b^(1/8)*x*Sec[Pi/8])/a^(1/8) - Tan[Pi/8]]*Cos[Pi/8] + 14*b^(7/8)*x^7*ArcT
an[(b^(1/8)*x*Sec[Pi/8])/a^(1/8) + Tan[Pi/8]]*Cos[Pi/8] - 7*b^(7/8)*x^7*Cos[Pi/8]*Log[a^(1/4) + b^(1/4)*x^2 -
2*a^(1/8)*b^(1/8)*x*Cos[Pi/8]] + 7*b^(7/8)*x^7*Cos[Pi/8]*Log[a^(1/4) + b^(1/4)*x^2 + 2*a^(1/8)*b^(1/8)*x*Cos[P
i/8]] - 14*b^(7/8)*x^7*ArcTan[Cot[Pi/8] - (b^(1/8)*x*Csc[Pi/8])/a^(1/8)]*Sin[Pi/8] + 14*b^(7/8)*x^7*ArcTan[Cot
[Pi/8] + (b^(1/8)*x*Csc[Pi/8])/a^(1/8)]*Sin[Pi/8] - 7*b^(7/8)*x^7*Log[a^(1/4) + b^(1/4)*x^2 - 2*a^(1/8)*b^(1/8
)*x*Sin[Pi/8]]*Sin[Pi/8] + 7*b^(7/8)*x^7*Log[a^(1/4) + b^(1/4)*x^2 + 2*a^(1/8)*b^(1/8)*x*Sin[Pi/8]]*Sin[Pi/8])
/(56*a^(15/8)*x^7)

________________________________________________________________________________________

Maple [C]  time = 0.003, size = 36, normalized size = 0.1 \begin{align*} -{\frac{1}{8\,a}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}b+a \right ) }{\frac{\ln \left ( x-{\it \_R} \right ) }{{{\it \_R}}^{7}}}}-{\frac{1}{7\,a{x}^{7}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^8/(b*x^8+a),x)

[Out]

-1/8/a*sum(1/_R^7*ln(x-_R),_R=RootOf(_Z^8*b+a))-1/7/a/x^7

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{\frac{1}{16} \, b{\left (\frac{2 \, \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x + \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{a} + \frac{2 \, \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x - \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{a} + \frac{2 \, \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x + \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{a} + \frac{2 \, \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x - \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{a} + \frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} + x \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{a} - \frac{\sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} - x \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{a} + \frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} + x \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{a} - \frac{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} - x \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{a}\right )}}{a} - \frac{1}{7 \, a x^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(b*x^8+a),x, algorithm="maxima")

[Out]

-b*integrate(1/(b*x^8 + a), x)/a - 1/7/(a*x^7)

________________________________________________________________________________________

Fricas [B]  time = 1.39185, size = 1231, normalized size = 4.44 \begin{align*} -\frac{28 \, \sqrt{2} a x^{7} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} \arctan \left (-\frac{\sqrt{2} a^{13} x \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{7}{8}} - \sqrt{2} a^{13} \sqrt{\frac{\sqrt{2} a^{2} b x \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} + a^{4} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{4}} + b^{2} x^{2}}{b^{2}}} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{7}{8}} - b^{6}}{b^{6}}\right ) + 28 \, \sqrt{2} a x^{7} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} \arctan \left (-\frac{\sqrt{2} a^{13} x \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{7}{8}} - \sqrt{2} a^{13} \sqrt{-\frac{\sqrt{2} a^{2} b x \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} - a^{4} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{4}} - b^{2} x^{2}}{b^{2}}} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{7}{8}} + b^{6}}{b^{6}}\right ) + 7 \, \sqrt{2} a x^{7} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} \log \left (\sqrt{2} a^{2} b x \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} + a^{4} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{4}} + b^{2} x^{2}\right ) - 7 \, \sqrt{2} a x^{7} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} \log \left (-\sqrt{2} a^{2} b x \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} + a^{4} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{4}} + b^{2} x^{2}\right ) + 56 \, a x^{7} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} \arctan \left (-\frac{a^{13} x \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{7}{8}} - a^{13} \sqrt{\frac{a^{4} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{4}} + b^{2} x^{2}}{b^{2}}} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{7}{8}}}{b^{6}}\right ) + 14 \, a x^{7} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} \log \left (a^{2} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} + b x\right ) - 14 \, a x^{7} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} \log \left (-a^{2} \left (-\frac{b^{7}}{a^{15}}\right )^{\frac{1}{8}} + b x\right ) + 16}{112 \, a x^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(b*x^8+a),x, algorithm="fricas")

[Out]

-1/112*(28*sqrt(2)*a*x^7*(-b^7/a^15)^(1/8)*arctan(-(sqrt(2)*a^13*x*(-b^7/a^15)^(7/8) - sqrt(2)*a^13*sqrt((sqrt
(2)*a^2*b*x*(-b^7/a^15)^(1/8) + a^4*(-b^7/a^15)^(1/4) + b^2*x^2)/b^2)*(-b^7/a^15)^(7/8) - b^6)/b^6) + 28*sqrt(
2)*a*x^7*(-b^7/a^15)^(1/8)*arctan(-(sqrt(2)*a^13*x*(-b^7/a^15)^(7/8) - sqrt(2)*a^13*sqrt(-(sqrt(2)*a^2*b*x*(-b
^7/a^15)^(1/8) - a^4*(-b^7/a^15)^(1/4) - b^2*x^2)/b^2)*(-b^7/a^15)^(7/8) + b^6)/b^6) + 7*sqrt(2)*a*x^7*(-b^7/a
^15)^(1/8)*log(sqrt(2)*a^2*b*x*(-b^7/a^15)^(1/8) + a^4*(-b^7/a^15)^(1/4) + b^2*x^2) - 7*sqrt(2)*a*x^7*(-b^7/a^
15)^(1/8)*log(-sqrt(2)*a^2*b*x*(-b^7/a^15)^(1/8) + a^4*(-b^7/a^15)^(1/4) + b^2*x^2) + 56*a*x^7*(-b^7/a^15)^(1/
8)*arctan(-(a^13*x*(-b^7/a^15)^(7/8) - a^13*sqrt((a^4*(-b^7/a^15)^(1/4) + b^2*x^2)/b^2)*(-b^7/a^15)^(7/8))/b^6
) + 14*a*x^7*(-b^7/a^15)^(1/8)*log(a^2*(-b^7/a^15)^(1/8) + b*x) - 14*a*x^7*(-b^7/a^15)^(1/8)*log(-a^2*(-b^7/a^
15)^(1/8) + b*x) + 16)/(a*x^7)

________________________________________________________________________________________

Sympy [A]  time = 2.91265, size = 32, normalized size = 0.12 \begin{align*} \operatorname{RootSum}{\left (16777216 t^{8} a^{15} + b^{7}, \left ( t \mapsto t \log{\left (- \frac{8 t a^{2}}{b} + x \right )} \right )\right )} - \frac{1}{7 a x^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**8/(b*x**8+a),x)

[Out]

RootSum(16777216*_t**8*a**15 + b**7, Lambda(_t, _t*log(-8*_t*a**2/b + x))) - 1/(7*a*x**7)

________________________________________________________________________________________

Giac [B]  time = 1.20408, size = 601, normalized size = 2.17 \begin{align*} -\frac{b \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x + \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a^{2}} - \frac{b \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x - \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a^{2}} - \frac{b \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x + \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a^{2}} - \frac{b \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x - \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a^{2}} - \frac{b \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} + x \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a^{2}} + \frac{b \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} - x \sqrt{\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a^{2}} - \frac{b \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} + x \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a^{2}} + \frac{b \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} - x \sqrt{-\sqrt{2} + 2} \left (\frac{a}{b}\right )^{\frac{1}{8}} + \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a^{2}} - \frac{1}{7 \, a x^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(b*x^8+a),x, algorithm="giac")

[Out]

-1/8*b*sqrt(sqrt(2) + 2)*(a/b)^(1/8)*arctan((2*x + sqrt(-sqrt(2) + 2)*(a/b)^(1/8))/(sqrt(sqrt(2) + 2)*(a/b)^(1
/8)))/a^2 - 1/8*b*sqrt(sqrt(2) + 2)*(a/b)^(1/8)*arctan((2*x - sqrt(-sqrt(2) + 2)*(a/b)^(1/8))/(sqrt(sqrt(2) +
2)*(a/b)^(1/8)))/a^2 - 1/8*b*sqrt(-sqrt(2) + 2)*(a/b)^(1/8)*arctan((2*x + sqrt(sqrt(2) + 2)*(a/b)^(1/8))/(sqrt
(-sqrt(2) + 2)*(a/b)^(1/8)))/a^2 - 1/8*b*sqrt(-sqrt(2) + 2)*(a/b)^(1/8)*arctan((2*x - sqrt(sqrt(2) + 2)*(a/b)^
(1/8))/(sqrt(-sqrt(2) + 2)*(a/b)^(1/8)))/a^2 - 1/16*b*sqrt(sqrt(2) + 2)*(a/b)^(1/8)*log(x^2 + x*sqrt(sqrt(2) +
 2)*(a/b)^(1/8) + (a/b)^(1/4))/a^2 + 1/16*b*sqrt(sqrt(2) + 2)*(a/b)^(1/8)*log(x^2 - x*sqrt(sqrt(2) + 2)*(a/b)^
(1/8) + (a/b)^(1/4))/a^2 - 1/16*b*sqrt(-sqrt(2) + 2)*(a/b)^(1/8)*log(x^2 + x*sqrt(-sqrt(2) + 2)*(a/b)^(1/8) +
(a/b)^(1/4))/a^2 + 1/16*b*sqrt(-sqrt(2) + 2)*(a/b)^(1/8)*log(x^2 - x*sqrt(-sqrt(2) + 2)*(a/b)^(1/8) + (a/b)^(1
/4))/a^2 - 1/7/(a*x^7)